Poster Competition

Grading Rules for Poster Competition

Students who participate in the Poster Competition should print their posters and be posted before the designated time (Topic 1, 3, 5 on November 11th; Topic 2, 4 on November 12th). The "Winners" and "Honorable Mention" posters will be selected, and the certificates and prize money will be awarded for encouragement.

I. Eligibility (must meet all requirements):

- 1. The contestants must have student status at the time of the conference. Please bring your student ID for verification at the registration desk.
- 2. To participate in the competition, students must be registered for this conference and have completed the registration payment.

II. Competition rules and grading policy:

- 1. Required poster format: A0 (84.1 cm x 118.9 cm). According to the assigned time slots, **please complete the poster posting before 12:00 on Nov. 11th or 12th**.
- 2. Grading policy: Content (50%), Art and Design (20%), and Presentation & QA (30%).

III. Award

- 1. Top 10 % of each topic will be announce as "Winners" and awarded NT \$2000.
- 2. Top 20% of each topic will be given an "Honorable Mention".

IV. Undefined matters will be discussed and decided by the committee and judges.

Poster Competition

Topic 1: Batteries

(Fri, Nov 11, Chemical Engineering Building 1F)

No.	Presenting Author	Affiliation	Title
T1-PC-001	Yi-Yen Hsieh	National Tsing Hua University	Architectural van der Waals Bi2S3/Bi2Se3 topological heterostructure as a superior potassium-ion storage material
T1-PC-002	Che-Ya Wu	National Tsing Hua University	Freeze Drying Process Applied in Constructing 3D-Net Architecture Cellulose Nanofiber / Waste-Si Composite in Lithium-ion Battery Anode Materials
T1-PC-003	Zhi-Ting Liu	Chung Yuan Christian University	Temperature effects on biomass carbon derived from sawdust as an anode material for Na ion batteries
T1-PC-004	Cheng-En Yu	Chung Yuan Christian University	Li1.3AI0.3Ti1.7(PO4)3 solid electrolytes synthesized by microwave-assisted hydrothermal reaction for Li all-solid-state batteries
T1-PC-005	Yin-Chen Hsu	Chung Yuan Christian University	Mechanochemical Synthesis of Li6PS5Br Solid Electrolytes for Li Solid Batteries
T1-PC-006	Cheng-Che Wu	National Cheng Kung University	High-energy-density Lithium–Sulfur Electrochemistry with a Lean-electrolyte Design based on a Hot- pressed Electrospun Cathode
T1-PC-007	Chien Hao Yeh	National Tsing Hua University	Improved Electrochemical Performance of Oxygen-Redox-Based Layer Oxide Cathode for Na-ion Batteries Through Alkaline Metal Layer Doping
T1-PC-008	Debabrata Mohanty	Yuan Ze University	High conduction solid polymer electrolyte for all-solid-state lithium-ion battery at ambient temperature
T1-PC-009	Yu-Hsuan Li	Chung Yuan Christian University	Silicon/carbon composite anode derived from nano silicon/phenolic resin/pitch as anode materials for lithium-ion batteries
T1-PC-010	Yun-Chen Wu	National Cheng Kung University	Bifunctional cathode structure design for high-sulfur-loading and lean-electrolyte lithium-sulfur cells
T1-PC-011	Chui-Yi Kung	National Cheng Kung University	Tin-modified Sulfur for Lithium–Sulfur Batteries
T1-PC-012	Wei-Chu Hsu	Chung Yuan Christian University	Enhanced electrochemical properties of hard carbon derived from phenolic resin modified via a high efficiency oxygen-induced plasma treatment as anode materials for lithium ion batteries
T1-PC-013	Tzu-Ching Chan	National Cheng Kung University	A Novel Sandwiched – Structural Poly(vinylidene fluoride-co-hexafluoropropylene)/ Polyacrylonitrile/ Poly(vinylidene fluoride-co-hexafluoropropylene) Membrane for the Lithium-Sulfur Battery
T1-PC-014	Yen-Chen Lin	National Cheng Kung University	Lithium Sulfur Batteries With a Thin Lithium and High-entropy-metal-oxide Separator
T1-PC-015	Guan-Ting Yu	National Cheng Kung University	Free-Standing Multidimensional Graphene-CNT Electrode for Highly Stable Lithium-Sulfur Batteries
T1-PC-016	Bo-Xian Ye	National Cheng Kung University	Solid-state Oxide Electrolyte in the Cathode for High-loading Lithium-Sulfur Batteries
T1-PC-017	Chen-Wei Tai	National Tsing Hua University	Accessing the superior plateau capacity of phenolic-formaldehyde resin-derived hard carbon for lithium- ion storage
T1-PC-018	Hao-Yu Ku	National Tsing Hua University	Improvements in Li deposition and stripping induced by Cu (111) nanotwinned columnar grains
T1-PC-019	Jia He Su	National Yunlin University of Science and Technology	Electrochemical Activation of ZnV2O4 for Enhanced Energy Storage in Aqueous Zinc-Ion Batteries
T1-PC-020	Jun-Wei Yung	Chung Yuan Christian University	Synthesis and characterization of single-walled carbon nanotubes-modified SiOx/soft carbon/C composite as anode materials for Lithium-ion batteries
T1-PC-021	Yi-Ying Lee	National Yunlin University of Science and Technology	Crystallographic Effects of Vanadium Oxides on Electrochemical Performances in Aqueous Zn-Ion Batteries
T1-PC-022	Wei-Wen Shen	National Tsing Hua University	Self-Healing Cu3BiS3 Nanocrystal Electrodes for Ultrastable Potassium Ion Storages: An Alternative Electrochemical Reconstruction
T1-PC-023	Liao Yan Jie	National Tsing Hua University	MnPSe3/graphite nanocomposite as a high-performance anode materialfro potassium-ion half batteries
T1-PC-024	Xun-Hong Xiao	National Taiwan University of Science and Technology	Oxygen-Vacancy-Rich BiVO4 Decorated on Graphite Felt to Improve the Vanadium Redox Flow Battery Performance
T1-PC-025	Ammaiyappan Anbunathan	Ming Chi University of Technology	In-situ growth of ZIF67 nanoparticles on the glass fiber separator as the performance booster for the lithium-sulfur polyacrylonitrile battery
T1-PC-026	Jian-Xue Huang	National Yunlin University of Science and Technology	Defect regulated spinel Mn3O4 obtained by glycerol-assisted method for high-energy-density aqueous zinc-ion batteries
T1-PC-027	Che-Bin Chang	National Tsing Hua University	Rock-salt type solid solution as anode material for high performance potassium ion battery via high entropy engineering
T1-PC-028	Shou-Shan Mai	National Tsing Hua University	Interfacial Engineering of CNT-wrapped AgP2 Composites Enables Excellent Potassium ion Hybrid Capacitors
T1-PC-029	Zan-Tang Wang	National Taiwan University	Nickel Metal Hybrid Battery Degradation Mechanism Analysis and State-of-Health Estimation by Machine Learning
T1-PC-030	Yu-Shan Huang	National Tsing Hua University	Effect of Current Density on the Electrodeposited Mg for Rechargeable Mg Batteries
T1-PC-031	Le-Yen Lin	National Taiwan University	Simulation of Mixed Ion-Electron Transport in Composite Electrodes
T1-PC-032	Yung-Jen Chang	National Tsing Hua University	The Discharge Behavior of Magnesium Metal Negative Electrode for Rechargeable Magnesium Batteries
T1-PC-033	Chien Po-Wen	National Tsing Hua University	Cu3PS4: a sulfur-rich metal phosphosulfide with superior ionic diffusion channel for high-performance potassium ion batteries/hybrid capacitors

No.	Presenting Author	Affiliation	Title
T1-PC-034	Jung-Chieh Teng	National Tsing Hua University	A Sandwich-type Composite Polymer Electrolyte to Improve Interface Properties
T1-PC-035	Jian-Yi Li	National Tsing Hua University	Exploring the catalytic pathway of Binary Ruthenium-Tin Oxides for Li-O2 batteries
T1-PC-036	Yi-Min Lin	National Taiwan University of Science and Technology	Vanadium Redox Flow Battery Using Nitrogen-doped Tungsten Carbide Nanowire Electrocatalyst Decorated on Graphite Felt Electrodes
T1-PC-037	Chun-Yen Yang	National Taiwan University	Controlling Lithium Storage of Terephthalic Acid-Based MOFs in Lithium Ion Batteries
T1-PC-038	Peng-Xuan Yu	National Taiwan University of Science and Technology	Preparation of Cu3N Thin Film on Cu foil by Atmospheric Pressure Plasma Jet and Acid treatment for Anode Free Lithium-Ion Battery
T1-PC-039	Hong-Jyun Huang	National Tsing Hua University	Effect of pH value of the Acetate-based Electrolyte on the Zn/MnO2 Batteries
T1-PC-040	Chi-Yu Lai	National Tsing Hua University	Near-neutral flexible zinc-air batteries with high power densities and long cycle life using chloride-based gel polymer electrolytes
T1-PC-041	Yi-Xiu Chen	National Cheng Kung University	Facile Fabrication of (Inverse-) Patterned Construction to Realize the Fast-charging and Longevity of Silicon Anode for Lithium Micro-battery
T1-PC-042	Yee Jun Quay	National Cheng Kung University	High Performance Lithium-Sulfur Battery with Sulfide Solid Electrolytes
T1-PC-043	Hao-Wen Liu	National Taiwan University	R&D strategies on High Energy Density All-Solid-State Lithium Batteries (ASSLBs) with Halide Electrolytes
T1-PC-044	Wei-Hsiang Chen	National Taiwan University	Synthesis and Characterization of Multiple Ion Modification of Li(Ni0.8Co0.1Mn0.1)O2 Cathode Material
T1-PC-045	Shiki Thi	National Taiwan University	Synthesis Strategies for High-Voltage-Stable Fluorinated Halide Solid State Electrolytes

Topic 2: Capacitors & Fast Charging Devices (Sat, Nov 12, Chemical Engineering Building 1F)

No.	Presenting Author	Affiliation	Title
T2-PC-001	Guan-Ting Yu	National University of Tainan	Mesoporous carbon derived from carbon black used for electric double-layer capacitor in organic electrolytes without adding of electron conductive filler
T2-PC-002	Tsung Yi Chen	National Tsing Hua University	Ni-containing Polyoxovanadates as Electrode Materials for High-energy Lithium-ion Capacitors
T2-PC-003	Wan-Ju Chiu	National Tsing Hua University	MoVOH micro flakes Interconnected with SWCNT as Cathodes for Aqueous Zinc-ion Batteries
T2-PC-004	Cheng-Hui Shen	National Cheng Kung University	Growth of Redox-Active Cerium-Based Metal–Organic Framework Nanocrystals on Carbon Nanotubes for Boosting Supercapacitor Performance
T2-PC-005	Yen-Yu Tung	National Tsing Hua University	MoO3/PEDOT:PSS electrodes for transparent and stretchable supercapacitors
T2-PC-006	Meng Fei Wu	National Tsing Hua University	Gas-Phase Electrophoresis of Glucose-Derived Carbon Nanosphere Colloid for Supercapacitor Applications

Topic 3: Photoelectrochemistry (Fri, Nov 11, Chemical Engineering Building 1F)

No.	Presenting Author	Affiliation	Title
T3-PC-001	Nurlailatush Sholihah	National Kaohsiung University of Science and Technology	Trifluoromethyl group-modified triphenylamine dibenzofulvene hole transporting interfacial layers for high performance inverted perovskite solar cells
T3-PC-002	Chia-Feng Li	National Taiwan University	Effect of Hole Transport Layer on Indoor Organic Photovoltaic
T3-PC-003	Sheng-Wen Huang	National Taiwan University	Composition Engineering of Methylammonium Free Wide Bandgap Perovskite Solar Cell with Suppressed Photoinduced Phase Segregation
T3-PC-004	Hsin-Te Chang	National Taiwan University of Science and Technology	Simplify Manufacturing Steps of Growing MoS2 on Graphene for Photocatalytic CO2 Reduction
T3-PC-005	Vinh Son Nguyen	National Tsing Hua University	Triple-Fence Porphyrins for High-Efficiency Dye-Sensitized Solar Cells
T3-PC-006	Yin-Hsuan Chang	Chang Gung University	Defect Passivation Toward High-Performance Perovskite Solar Cells
T3-PC-007	Ana Maria Oliveira Barbisan	National Tsing Hua University	A TiO2/SnO2 low-temperature bilayer electron transport material for perovskite solar cells with >20% efficiency
T3-PC-008	Jui-Tai Lin	National Tsing Hua University	High-Entropy Alloy-Semiconductor Hybrid Nanocrystals for Photocatalytic Water Splitting

Topic 4: Electrochemical Technologies

(Sat, Nov 12, Chemical Engineering Building 1F)

No.	Presenting Author	Affiliation	Title
T4-PC-001	Yi-Min Wu	National Taiwan University	In Situ Dual-way Electrical Conditioning for a PEDOT-based K+ Ion-selective Electrode by Galvanostatic and Potentiostatic Control
T4-PC-002	Yu-Hsiang Yang	National Tsing Hua University	A high-capacity hybrid desalination system using battery type and pseudocapacitive type electrodes
T4-PC-003	Hsiang-Chih Chuang	Chang Gung University	Supercritical CO2-Assisted Carbon Coating on Lithium Iron Phosphate Cathode for High-Performance Lithium-Ion Batteries
T4-PC-004	Cheng-Ting Hong	National Yunlin University of Science and Technology	Tunable KMF3 (M = Ni, Mn) Perovskite Fluorides for Electro-oxidation of Urea
T4-PC-005	Ming-Kun Lu	National Tsing Hua University	Systematical Factorial experiment strategy study on the effect of electrodeposition parameter on copper roughness
T4-PC-006	An-Rong Huang	National Taiwan University	Mixed Proton-Electron Conduction of Metal Organic Frameworks
T4-PC-007	Ying Chen Liu	Tamkang University	Electrochemical cobalt and nickel recovery using deep eutectic solvents for treatment of spent lithium-ion batteries
T4-PC-008	Shih-Hua Chen	National Tsing Hua University	Direct-Current Electrodeposition of Nanotwinned Copper and Orientation-Controlled Copper Induced by Varying Additives
T4-PC-009	Ting-Yu Yang	Feng Chia University	A Simple Amperometric Sensor for Detection of Ascorbic Acid and Dopamine
T4-PC-010	Yu-Syuan Wu	Providence University	Flexible piezoelectric self-charging supercapacitor power cell based on ZIF-67/Co oxide/CC//Mn oxide/CC asymmetric electrodes and ion gel piezo-electrolyte
T4-PC-011	Song-Chi Chen	National United University	Morphologically tunable Bifunctional Cu oxide-based Nanomaterials on Cu wire for Non-enzymatic Glucose Sensing and Supercapacitors
T4-PC-012	Lei Hu	National Taiwan University of Science and Technology	Fabrication of electrochemical glucose sensor made by vertically aligned carbon nanotubes with MoO3
T4-PC-013	Hung-Yi Huang	National Tsing Hua University	Dopant-designed conducting polymers for constructing a high-performance, symmetric, electrochemical deionization system achieving low energy consumption and long cycle life
T4-PC-014	Shih-Han Wang	National Yunlin University of Science and Technology	CuOx/N-rGO for Exhaled Formaldehyde Gas Sensing
T4-PC-015	Su-Pin Liao	Chang Gung University	Polyethylene glycol enhances thermal stability of magneto-electrochemical biosensor for miRNA-183-5p
T4-PC-016	Xin-Ru Lin	Providence University	Voltammetric and electrochemical impedance spectroscopic studies on PVP- and PVP/VA-capped Pt electrodes for the applications of dye-sensitized solar cells

Topic 5: Electrochemical Driven Conversion (Fri, Nov 11, Chemical Engineering Building 1F)

No.	Presenting Author	Affiliation	Title
T5-PC-001	Chih-Chieh Cheng	National Tsing Hua University	Modulation of Coordination Environment Enhances Electrocatalytic Efficiency of Mo Single Atoms toward Hydrogen Evolution Reaction
T5-PC-002	Tsung-Ju Lee	National Yang Ming Chiao Tung University	Surface-modified Cu2O Nanowire Enables CO2RR to C2+ Products with Industrial-scale Current Density
T5-PC-003	Hsin-Jung Tsai	National Yang Ming Chiao Ting University	Carbon Nanofiber-supported Nickel Single-Atom Catalyst Meets the Industrial Criteria of CO2-to-CO Conversion
T5-PC-004	Zih-Yi Lin	National Yang Ming Chiao Ting University	Metal-organic-framework-derived Tubular Copper Electrocatalyst For Efficient Electroreduction of CO2 To C2+ Products
T5-PC-005	Wen-Jing Zeng	National Yang Ming Chiao Tung University	Chemical-Vapor-Deposited Cobalt Boride Boosts the Alkaline Seawater Electrolysis
T5-PC-006	Wen-Yang Huang	national Yang Ming Chiao Tung University	Cerium-incorporated MOF-derived Cobalt Oxide for High-efficient Non-noble Acidic Oxygen Evolution Reaction
T5-PC-007	Lu-Yu Chueh	National Tsing Hua University	WOx Nanowire Supported Ultra-Fine Ir OER Nanocatalyst
T5-PC-008	Zi Yin Huang	National Tsing Hua University	Manipulating the activity and selectivity of electrocatalytic CO2 reduction reaction by adjusting water content in a membrane electrode assembly reactor
T5-PC-009	Wesley Jen- Yang Chang	National Tsing Hua university	The Effect of Ag-Cu Catalyst Layer Structure on CO2RR
T5-PC-010	Jia Min Cai	National Tsing Hua University	Electrochemical CO2 reduction to methane on Cu catalyst by controlling the spatial distribution of catalyst
T5-PC-011	Shang-Cheng Lin	National Tsing Hua University	Manipulating the 2e- and 4e- oxygen reduction pathways by controlling the coordination environments of Au-based nanocrystals
T5-PC-012	Yu-Hsuan Hsu	National Tsing Hua University	The Catalyst Layer of Proton Exchange Membrane Fuel Cell Activity and Stability Enhancement by Molybdenum (Mo) Surface-Modified Platinum Cobalt (PtCo/C) Electrocatalyst
T5-PC-013	Wei-Ting Tu	National Tsing Hua University	The Influence of Dynamic Valence State of Copper and Silver to CO2RR by using Pulsed Potential Electrolysis
T5-PC-014	Yueh-Chun Hsiao	National Tsing Hua University	A Library of High-Entropy-Alloy Colloidal Nanocrystals for Catalysis
T5-PC-015	Bushra Rehman	National Tsing Hua University	Rational Design of WSe2/WS2 Heterostructure by Low Temperature Plasma-Assisted Chemical Reaction toward Enhanced Hydrogen Evolution Reaction